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Ab initio theoretical ground state potentials of diatomic molecules calculated 
with the use of the variational CI-MO (configuration interaction method based 
on molecular orbitals) are analyzed with the use of the RPC (reduced potential 
curve) method. It is shown on a series of examples that the following statement 
is true even for inaccurate ab initio calculations: in reduced form, the theoreti- 
cal potential coincides to a high degree of accuracy with the reduced RKR 
(Rydberg-Klein-Rees) potential calculated from the spectroscopic data. Thus, 
with the use of the RPC method, even inaccurate ab initio calculations (in 
particular for heavier molecules) may be.used for the construction of rather 
accurate internuclear potentials and hence obtain a practical significance. The 
statement also holds for excited states if strong perturbations are not present. 

Key words: Diatomic molecules - -  Potential (internuclear) - -  Reduced poten- 
tial curves 

1. The RPC (reduced potential curve) method and its application 

All fundamental concepts of molecular spectroscopy are based on the adiabatic 
approximation [ 1 ] and the concept of internuclear potential. Therefore, the study 
of molecular internuclear potentials is of fundamental interest. In this paper, we 
concentrate on the simplest case, i.e. the diatomic molecules. The number of 
diatomic systems including ions is of the order 104 and, for every molecule, a 
number of electronic states exist (ground and excited states). The potential curves 
for various molecules and the values of the corresponding molecular constants 
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are very diversified so that the study of molecular potentials rather reminds of a 
walk through a jungle. The method of reduced potential curve (RPC) [2] was 
conceived to permit a systematic comparative study of  internuclear potentials of 
diatomic molecules in a unique scheme and thus facilitate the study of this rather 
complex domain. In this scheme, the potentials are expressed in the "reduced" 
form, i.e. in terms of dimensionless quantities: reduced energy, u, and reduced 
internuclear distance p. These quantities are defined by the following equations: 

u = U / D e ,  ( 1 )  

r -  [1 - exp (-r/pjj)]p~ 
p - ( 2 )  

re - [1 - exp ( - r /  po) ]pi ~ 

re - (KD~ lke )  'i2 
P~ = 1 - e x p  (-re/po) '  K = 3.96, (3) 

ke = (d 2 Uldr2)r=,2. (4) 

For practical reasons, p vs ( u +  1) is plotted in the figures (both quantities 
positive). 

In the present paper, we shall deal only with the ground states. Figures 1 and 2 
illustrate in a sufficiently pictorial way the meaning and significance of the RPC 
method: Fig. 1 shows the ground state Rydberg-Klein-Rees (RKR) potentials 
[3] of various molecules (calculated from spectroscopic data) where the potential 
curves have been moved to a common minimum in the r vs U diagram. The 
constants re and De of  LiH were taken as units of  distance and energy, respectively. 
Figure 2 shows the same potentials in the reduced form. Figure 1 clearly illustrates 
how diversified are the molecular constants and the form of the potential curves. 
In reduced form (Fig. 2), the potential curves of H2, HF, LiH, CsH, Li2, Cs2, 
12, and Bi2 practically coincide in the left limb and for all but the last three heavy 
molecules, they almost coincide also in the right limb. A crossing of the potential 
curves appears, for some molecules, in Fig. 1, whereas the RPCs in Fig. 2 do not 
cross and the ordering of the RPCs from left to right is the same in the left and 
the right limb (cf. Appendix A). 

A systematic study of a large number of  diatomic molecules has disclosed 
interesting regularities which we loosely call "a  periodic system of diatomic 
molecules" (Appendix A). A warning is here in order: a superficial inspection 
of  Fig. 1 might suggest that there already exists an ordering of the RKR potentials 
with respect to the force constant, which then might determine the ordering of 
the RPCs. This impression is, of course, false (not only because of the crossing 
existing in Fig. 1). This may be seen in Comparing the RKR potentials of Cs2, 
I2, and Bi2 with the corresponding RPCs in Fig. 2, where the ordering evidently 
is reversed in the right limb. One also observes that in spite of toe(I2) > oge(Bi2) 
(Table 1), the RPC of I, lies to the right of the RPC of Bi2 in Fig. 1. Moreover, 
whereas the ordering in Fig. 1 is different in the left and the right limb, it is the 
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Fig. 1. RKR potentials. The values of  r~(LiH) and De(LiH ) are taken as units of  distance and energy, 
respectively. (References in brackets.) 1: HF [25]. 2 : H2  [25]. 3: LiH [13]. 4: CsH [22]. 5: Li 2 [35]. 
6 :Cs2 [36]. 7: I 2 [37]. 8: Bi 2 [33] 

Fig. 2. Reduced RK R  and theoretical potentials to Fig. 1. Left limb: the hatched area contains the 
RPCs of H2, HF, LiH, CsH, Li2, Cs2, 12 and Bi 2 (the left and right boundary of this area are the 
RPCs Li 2 and Bi2, respectively). Right limb: the hatched area contains the RPCs of all these molecules 
except Cs2, I2, and Bi2. Solid lines: 1: Cs2.2:  I2.3: Bi2. The ordering from left to right is the same 
in both limbs. The RPCs do not  cross anywhere. Dashed line: reduced theoretical potential curve of 
Bi2 [32] 

Fig. 3. Compar ison of R KR  and ab initio calculated theoretical potentials. 1: R K R  curve of Na2 [8]. 
2: RKR curve of K 2 [9]. 3: R KR  curve of Rb 2 [ 10]. A: theoretical potential of  Na 2 [ 1 1 ] . . :  theoretical 
potential of  K 2 [ 11 ]. V: theoretical potential of Rb 2 [ 11]. De (Na2) is taken as unit of  energy. Common  
min imum at re (Na2) 

Fig. 4. Reduced RK R  and theoretical potentials [11] to Fig. 2. All potentials coincide in left limb in 
this format. Right limb: Solid line: reduced R KR  potential of Na 2. Dashed  line: reduced RKR 
potential of  Rb2. O: reduced R K R  potential of  K2. A: reduced theoretical potential of  Na2. m: 
reduced theoretical potential of  K 2. V: reduced theoretical potential of  Rb2. (Here and in Fig. 5, 
the errors in r e or to e alone (Table 2) would lead to huge deviations, cf. Figs. 10 and 11) 
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same in both limbs in Fig. 2. This holds also for the lighter molecules, the RPCs 
of which are not explicitly shown in Fig. 2. Neither would the use of  the 
reduced energy alone suffice to yield a reasonable scheme. For instance, 
De(HF) = 49 383 cm -~, D~(H2) = 38 297 cm -1, we(HF) = 4138.32 cm -1, we(H2) = 
4403.21 cm -a. 

Hence HF  is "more  strongly bounded"  than H2. However, in the ordering of the 
RPC scheme (which corresponds to increasing atomic numbers and turns the 
curve to the right around the common minimum, cf. Appendix A) the RPC of 
HF  comes after the RPC of H2, i.e. is located nearer to the common RPC of the 
loosely bounded inert gases (cf. also Ref. [4]). In fact, the regularities observed 
in the RPC scheme are based on much more intrinsic relations [2] than just the 
value of a molecular constant (or constants). 

The R K R  (Rydberg-Klein-Rees)  method [3] has now become a standard method 
for the calculation of  the interatomic potentials from spectroscopic data. Its 
goodness may be verified in calculating back the energy levels from the RKR 
potential and comparing them with the experimental values. The potential may 
then be corrected by an iterative procedure like the IPA method [5]. Unfortu- 
nately, for many molecules, only the lower part  of  the potential well may be 
obtained. E.g. also for the simple and common molecules N2 and 02, the RKR 
potential could be constructed only up to about 50-60% of  the depth of the 
minimum, De. For heavier molecules, the situation is still much worse, since the 
distance between the energy levels is smaller. Thus only a very small portion of 
the potential can be constructed from the experimental data, unless special 
methods of  laser spectroscopy may be used in a particular case. 

On the other hand, theoretical ab initio calculation of the interatomic potential 
for the all-electrons problem is a terrible task even for modern efficient computers. 
This has led to several simplified approximate methods (e.g. the method of 
effective atomic potentials, pseudopotentials etc.), however, for heavier molecules 
the errors in the calculated potentials and the molecular constants re, ke, De etc. 
are still large, so that such calculations may rather be used only for a qualitative 
discussion, like the overall scheme of excited state potentials etc. 

In Jena's PhD Thesis and the subsequent publications [6] also ab initio calculated 
theoretical potentials of  some diatomic molecules (including ab initio calculations 
of  the author) were evaluated and the following hypothesis was formulated and 
demonstrated on a few examples (cf. also Ref. [2]): 

The ab initio theoretical interatomic potential of  a diatomic molecule calculated 
on the basis of  the Raleigh-Ritz variational principle with the use of  the CI-MO 
(configuration interaction method based on molecular orbitals) coincides in 
reduced form to tiigh accuracy with the reduced R K R  potential of  the same 
molecule even if large errors in the molecular constants re, ke, and De exist, if 
an approximation of at least about 75-80% is obtained for De and a sufficiently 
extended number  of  configurations is taken to take account of  electron correlation. 
It was expected that, for heavier molecules, this hypothesis could hold also for 
pseudopotential  calculations if account is taken of the electron correlation and 
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of polarization in an adequate way. SCF calculations, which yield an essentially 
incorrect asymptotic behaviour of the potential, or too inaccurate simplified 
calculations do not yield any reasonable results and cannot be employed" for the 
application of the RPC method [2, 6]. 

The meaning of this hypothesis is the following: although the variational method 
is not sufficiently accurate to yield correct values of the molecular constants, it 
still reflects the fundamental structure of the physical problem. This seems to be an 
important result, since from the point of view of the theory, thestructure  of the 
problem is more interesting than the values of individual constants. 

Our hypothesis then leads to an interesting practical application of the RPC 
method. As a consequence of the hypothesis formulated above, even rather poor 
approximations could be used for a much more accurate determination of the 
internuclear potential as follows: Since, in reduced form, the RKR (IPA) potential 
and the theoretical potential practically coincide, one may obtain a very good 
approximation of the true potential if the experimental values of the constants 
re, ke, and De are known. First, the reduced potential is calculated from the 
ab initio potential; the true potential is then calculated from this reduced potential 
inverting the RPC formulas with the use of the experimental values of re, ke, and 
De. It may be obtained from the experimental data using the Dunham formula 

ke = 4~'2c2/zoJ 2 (5) 

which is commonly employed in molecular spectroscopy and in most cases (at 
least for the ground states) indeed represents a very accurate approximation. 
(Here/z  is the reduced mass, c is the velocity of light, and toe is the "harmonic" 
spectroscopic vibrational constant.) Thus also inaccurate theoretical potentials 
could serve for a rather accurate approximation of the true potential and hence 
be of practical use, which certainly is an interesting application of the RPC 
method. It may also be used to extend RKR potentials from the bottom of the 
well to a wider range. 

There has been a lot of scepticism about this hypothesis (including the author). 
However, it seems that, in general case, this hypothesis holds indeed which we 
would like to demonstrate in this paper on a series of examples, including heavier 
molecules. Problems connected with the calculation of theoretical values of the 
molecular constants re, ke, and De, corresponding to the ab initio potentials, are 
discussed in Appendix B. 

2. Results and discussion 

The RPC method is a graphical method, hence this paper must necessarily contain 
many figures. To keep the number of figures in reasonable limits, we can only 
show a certain choice of the material available, which we hope will nevertheless 
be sufficient to make our hypothesis plausible. It would be desirable to show in 
particular such examples, where both the RKR and the ab initio potential have 
been-calculated up to the dissociation limit and where the experimental and 
theoretical values of the constants re, ke, and De are known to sufficient accuracy. 



416 F. Jen6 and B. A. Brandt 

However ,  all these condi t ions  are fulfilled only for  a limited number  o f  molecules 
[7]. Therefore,  we show also examples where the potentials were calculated only 
in the lower  por t ion o f  the potential  well, which, however,  nonetheless seem 
illustrative. Experimental  values o f  the molecular  constants are in Table 1. Figure 
3 shows the R K R  potentials o f  Na2, I(2, and Rb2 [8-10] and ab initio calculated 
potentials o f  these molecules  [11]. The discrepancies are evidently large. Figure 
4 shows the same potentials  in reduced form. In  the left limb, the differences 
between the RPCs are so small that  they cannot  be shown in this format. The 
coincidence o f  the reduced ab initio potentials with the reduced R K R  potentials 
is also clearly seen in the right limb. The difference curves in Fig. 5 prove that 
this coincidence is, indeed,  very accurate. One might, o f  course, suspect that  
more significant deviations could exist in the upper  por t ion o f  the potential.  
Therefore,  for  compar ison,  Fig. 5 contains also the reduced theoretical potential  
o f  Na2 corresponding  to the ab initio potential  o f  [12] which coincides here very 
accurately with the reduced R K R  potential  o f  Na2. In [1.2] the potential  o f  Na2 
was calculated in a very wide range o f  the internuclear distance, so that we can 
make a compar i son  o f  the whole potential  curves o f  this molecule in Figs. 6-9 
and discuss some interesting points in this context. Figures 6 and 7 show the 
R K R  potential  and the ab initio calculated potential  o f  Na2 of  [12] in the left 
and right limb, respectively. The discrepancy is evidently again large. In both  
figures, the Morse potential  funct ion calculated with the experimental  values o f  
the molecular  constants is also shown. As is well known,  the Morse funct ion is 
a rather poor  approximat ion  for  most  molecules (even the Hulbur t -Hi rschfe lder  
potential  funct ion yields only a rather poor  approximat ion  [2]). Figures 8 and 9 
show the same potentials in reduced form. Whereas the Morse potential,  o f  
course, still represents a very poor  approximat ion,  a very accurate coincidence 

Table 1. Experimental values of molecular constants 

Molecule re(/k) Ref. tOe(Cm -1) Ref. De(cm -1) Ref. 

HF 0.91681 [40] 4138.32 [40] 49 383 [40] 
H2 0.74144 [40] 4403.21 [40] 38 297 [40] 
OH 0.96966 [23] 3737.76 [23] 37 274 [40] 
LiH 1.59558 [13] 1405.44 [13] 20288 [13] 
NaH 1.8890 [15] 1176.10 [15] 16 000 a [41] 
KH 2.2401 [20] 986.65 [20] 14776 [20] 
RbH 2.3673 [21] 937.19 [21] 14 500 a [41] 
CsH 2.4938 [40] 891.00 [42] 14 805 [22 (b)] 
Li 2 2.67324 [35] 351.390 [35] 8516.78 [35] 
Na 2 3.07908 [8] 159.177 [8] 6022.6 [8] 
K2 3.92443 [9] 92.3994 [9] 4440 [43] 
Rb 2 4.20990 [10] 57.7810 [10] 3950 a [44] 
Cs z 4.64800 [21] 42.0203 [21] 3649.5 [21] 
NaK 3.49680 [23(a)] 124.0124 [23(a)] 5274.9 [23(a)] 
12 2.6655 [37] 214.5481 [37] 12 548 [37] 
Bi 2 2.6609 [33] 173.062 [33] 16 407 [33] 

a These values are not known with absolute certainty 
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Fig. 5. Difference curves to Fig. 4, Differences in u from the reduced RKR curve of Na 2 (zero line) 
in the right limb. 1: reduced RKR potential of K 2. 2: reduced RKR potential of Rb 2. O: reduced 
theoretical potential of Na 2 [ 12]. � 9  redubed theoretical potential of Na2 [ 11]. V: reduced theoretical 
potential of K 2 ]- 11]. � 9  reduced theoretical potential of R b  2 [ 1 1  ] 

Fig. 6. RKR and theoretical potentials of Na2 (left limbs). Soiid lines: 1: RKR potential [8]. 2: 
theoretical potential [ 12], Dashed line: Morse function (experimental values of molecular constants). 
Experimental values of r~(Na2) and D~(Na2) are taken as units for distance and energy, respectively. 
The r-scale is about seven times more sensitive than in Fig. 7. (Curves shifted to common minimum) 

Fig. 7. RKR and theoretical potentials of Na 2 (right limbs). Solid lines: 1: RKR potential [8]. 2: 
theoretical potential [12]: Dashed line: Morse function. (cf. text to Fig. 6) 

Fig. 8. Na 2 . Reduced RKR and theoretical potentials to Fig. 6 (left limbs). 1: reduced RKR potential. 
2: reduced Morse potential. O: reduced theoretical potential [12]. A: reduced theoretical potential, 
where the experimental values of the molecular constants were used in Eqs. (1) to (3). The p-scale 
is about 8.5 times more sensitive than in Fig. 9 

o f  the  r e d u c e d  R K R  a n d  the  r e d u c e d  ab initio p o t e n t i a l  is o b s e r v e d .  F i g u r e s  8 
a n d  9 a l s o  c o n t a i n  the  r e d u c e d  ab initio p o t e n t i a l  c a l c u l a t e d  n o t  w i t h  the  corre-  
s p o n d i n g  t h e o r e t i c a l  v a l u e s  o f  the  m o l e c u l a r  c o n s t a n t s  b u t  w i t h  the ir  e x p e r i m e n t a l  
v a l u e s ,  w h i c h  n o w  l e a d s  to  a v e r y  large  d e v i a t i o n  f r o m  the  r e d u c e d  R K R  p o t e n t i a l .  
( F o r  t h e o r e t i c a l  v a l u e s  o f  the  m o l e c u l a r  c o n s t a n t s  cf. T a b l e  2.)  D i f f e r e n c e  c u r v e s  
c o r r e s p o n d s  to  Figs .  8 a n d  9 are s h o w n  in  Figs .  10 a n d  11 for  a w i d e  r a n g e  o f  

i n t e r n u c l e a r  d i s t a n c e  a n d  e n e r g y  a n d  p r o v e  the  v e r y  c l o s e  c o i n c i d e n c e  o f  th e  
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Fig. 9. Na2. Reduced RKR and theoretical potentials to Fig. 7 (right limbs). 1: reduced RKR potential. 
2: reduced Morse potential. O: reduced theoretical potential [12]. A: reduced theoretical potential, 
where the experimental values of the molecular constants were taken in Eqs. (1) to (3) 

Fig, 10. Na 2. Difference curves to Fig. 8. Differences in p from the reduced RKR potential (zero 
line) in the left limb. Solid line: reduced Morse potential. O: reduced theoretical potential [12]. 
Dashed line: reduced theoretical potential where the experimental values of the molecular constants 
were taken in Eqs. (1) to (3). C~: reduced theoretical potential with experimental value of re. V :  

reduced theoretical potential with experimental value of w e. &: reduced theoretical potential with 
experimental value of D e 

Fig. 11. Na 2. Difference curves to Fig. 9. Differences in u from the reduced RKR curve of Na2 (zero 
line), right limb. Solid line: reduced Morse potential. O: reduced theoretical potential [12]. Dashed 
line: reduced theoretical potential, where the experimental values of the molecular constants re, We, 
and D e were taken in Eqs. (1) to (3). V: reduced theoretical potential with experimental value of r e. 
C]: reduced theoretical potential with experimental value of to e. , :  reduced theoretical potential with 
experimental value of Do 

RKR and ab initio potentials in reduced form in the whole range. At the same 
time, we also show in Figs. 10 and 11 the deviations which arise if the experimental 
value is used only for one of the three molecular constants, to characterize the 
influence of  the various constants. Figures 8-11 clearly show that the coincidence 
of  the RKR and the ab initio potential in reduced form is not due to a compensa- 
tion of errors in the constants; rather the molecular constants corresponding to 
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Molecules Ref. re foe b De 

HF [26(GVB+ 1 +2)] 100.38 100.25 93.45 
HF [26(GVB)] 99.99 99.72 79.92 
HF [27] 99.98 99.64 99.96 
H 2 [25] 99.997 100.03 99.99 
OH [24(a)] 99.85 100.09 95.92 
OH [24(b)] 100.05 100.81 98.07 
OH [24(c)] 100.32 98.83 96.48 
OH [24(d)] 100.48 98.19 96.73 
OH [24(e)] 100.16 100.09 93.99 
LiH [ 15] 100.20 99.68 98.44 
LiH [16] 98.63 98.19 93.00 
LiH [ 17] 102.42 94.03 86.56 
Nail [ 18] 99.66 99.74 96.90 c 
Nail [16] 98.54 99.48 95.29 c 
NaH [ 17 ] 101.48 95.60 90.06 ~ 
NaH [19] 100.04 99.61 99.29 ~ 
KH [ 16] 99.09 100.44 98.05 
KH [19] 100.76 99.02 98.39 
RbH [16] 97.09 100.94 98.56 ~ 
RbH [19] 101.31 97.14 105.52 c 
CsH [16] 101.72 100.62 103.85 
CsH [ 17] 111.44 84.59 85.62 
Na 2 [11] 103.45 94.05 93.33 
Na z [12] 103.11 95.25 95.06 
K 2 [11] 105.84 90.75 89.42 
Rb2 [11] 108.81 87.39 91.58 

" Experimental values of the molecular constants for NaK +, NaRb +, KRb +, and Li + are not known 
b Theoretical value of to e is here calculated from k e (cf. Appendix B) using Eq. (5) 
c The experimental value of De is here not known with certainty 

the  t h e o r e t i c a l  ab initio p o t e n t i a l  h a v e  exac t ly  such  va lues  tha t  the  d i f fe rences  

b e t w e e n  the  R K R  a n d  the  ab initio po ten t i a l s  s h o w n  in Figs.  6 a n d  7 c o m p e n s a t e  

in the  r e d u c e d  fo rm.  Since ,  in the  R P C  s c h e m e ,  s o m e  f u n d a m e n t a l  r egu la r i t i e s  

in the  p o t e n t i a l s  o f  d i a t o m i c  m o l e c u l e s  a p p e a r  ( d e p e n d i n g  on  the  f u n d a m e n t a l  

p a r a m e t e r s  o f  the  p r o b l e m ,  n a m e l y ,  the  a t o m i c  n u m b e r s  Za a n d  Z2 a n d  the  

n u m b e r  o f  e l ec t rons  n, w h e r e  n = Z1 + Z2 fo r  neu t ra l  m o l e c u l e s ) ,  we  m a y  say tha t  

t he  i n a c c u r a t e  a p p r o x i m a t e  v a r i a t i o n a l  m e t h o d  still preserves the fundamental 
structure of  the physicalproblem. The  c o m p a r i s o n  wi th  the  M o r s e  f u n c t i o n  in Figs.  
6 - 9  ce r t a in ly  d e m o n s t r a t e s  qu i te  c o n v i n c i n g l y  tha t  the  d e g r e e  o f  a p p r o x i m a t i o n  

o f  the  p o t e n t i a l  o b t a i n e d  wi th  the  use o f  t he  R P C  m e t h o d  c a n n o t  be  c h a l l e n g e d  

by  any  " e m p i r i c a l "  p o t e n t i a l  func t ion .  (This  a lso  ho ld s  for  the  a p p l i c a t i o n  o f  the  

R P C  m e t h o d  w h e r e  t he  p o t e n t i a l  o f  a m o l e c u l e  is c a l c u l a t e d  f r o m  R K R  p o t e n t i a l  

o f  a n o t h e r  m o l e c u l e  o f  a g r o u p  o f  aff i l ia ted m o l e c u l e s ,  cf. [2].) 
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Figures 12 and 13 show the RKR potentials of  LiH and Na i l  ([13] and [14](a) 
and ab initio theoretical potentials calculated by different authors ([15-17] and 
[16-19], respectively),  where quite different degree of  approximation was 
obtained for the molecular constants in different papers (cf. Table 2). Figures 14 
and 15 show the same potentials in reduced form. Whereas, in particular in 
Fig. 13, large discrepancies exist between the RKR potential and some of the 
theoretical potentials, these discrepancies again disappear in reduced form for 
all potentials. 

Figure 16 shows the left limbs of the RKR potentials of KH, RbH, and CsH 
([20, 21 and 22], respectively) and the ab initio potentials of these molecules 
calculated by different authors ([16, 19] for KH and RbH, and [16, 17] for CsH). 
The values of the molecular constants are in Table 2. Figures 17 and 18 show 
the same potentials in reduced form. An SCF basis of molecular orbitals was 
used in [ 19] and the potential curves do not have the correct asymptotical behavior 
(towards the dissociation products). We still use the values of De corresponding 
to the asymptotics of  the curve (Table 2), since this value is consistent with its 
geometry (cf. the text below). Again a very good coincidence is obtained in 
reduced form, with the exception of the calculation of Karo et al. [17] for the 
heavy molecule CsH, where also only a poor  approximation of  De was obtained; 
in this case, the degree of approximation was not sufficient (relativistic effects 
were not included). In particular, the correlation effects probably were not 
adequately represented (cf. [17]). However, as may be seen in Figs. 17 and 18, 
the pseudopotential calculation of [16] seems to represent the core electron 
correlation adequately. In way of illustration, we also show in Fig. 18 the reduced 
abini t io  potential of RbH of  [19] calculated not with the value of De correspond- 
ing to the asymptotics of the potential curve but with the De value calculated by 
the authors for separated atoms (in this case, the two values do not agree). A 
deviation in the upper portion of the RPC then necessarily results, since the De 
value is not consistent with the geometry of the potential curve (cf. Appendix B). 

The examples discussed above seem, indeed, to confirm our hypothesis which 
holds also in other cases not shown here. Hence the application of the RPC 
method for an acceptable approximation of internuclear potentials from even 
rather inaccurate ab initio potentials seems to be justified. 

It is, however, to be noted that even quite accurate ab initio calculations are not 
accurate enough to reproduce correctly the regularities of the (very sensitive) 
RPC scheme. Figure 19 shows a comparison of the RKR potential of OH (from 
[23]) with five different ab initio calculated rather accurate potentials [24]. The 
values of the molecular constants are in Table 2. The differences are almost 
imperceptible in the current format of Fig. 19. However, the diperence curves of 
Fig. 20 reveal differences which are larger than the differences of reduced RKR 
potentials within a group of affiliated molecules (here nonmetallic hydrides). 
Unfortunately, there are evidently slight errors in the RKR potential of OH 
(possibly also in the experimental value of  De (OH)) [4], since the RPC of OH 
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Fig.  12. RKR and theoretical potentials (left limbs). 1: RKR potential of LiH [13]. 2: RKR potential 
of Nai l  [14]. Theoretical potentials: O: LiH [15]. m: LiH [16]. +: LiH [17]. A: Nail  [18]. V: Nail  
[16]. F]: Nai l  [17]. �9 Nail  [19]. Experimental values of r e (LiH) and D e (LiH) are taken as units 
for distance and energy, respectively. The r-scale is about nine times more sensitive than in Fig. 13. 
(Curves shifted to common minimum) 

Fig. 13. RKR and theoretical potentials (right limbs). 1: RKR potential of LiH [13]. 2: RKR potential 
of Nai l  [14]. Theoretical potentials: O: LiH [15]. m: LiH [16]. +: LiH [17]. A: Nai l  [18]. V: Nail  
[16]. D: Nai l  [17]. O: Nail  [19] (cf. text to Fig. 12) 

Fig. 14. Reduced potentials to Fig, 12 (left limbs). Dashed line: reduced RKR potential of  LiH [13]. 
~: reduced RKR potential of Nai l  [14]. Reduced theoretical potentials: O: LiH [15]. m: LiH [16]. 
+: LiH [17]. A: Nail  [18]. Y: Nai l  [16]. []: Nai l  [17]. O: Nail  [19]. The p-scale is about eight 
times more sensitive than in Fig. 15 

Fig. 15. Reduced potentials to Fig. 13 (right limbs). Dashed line: reduced RKR potential of LiH 
[13]. A: reduced RKR potential of Nai l  [14]. Reduced theoretical potentials: 0 :  LiH [15]. m: LiH 
[16]. +: LiH [17]. A: Nail  [18]. Y: Nail  [16]. []: Nai l  [17]. �9 Nail  [19] 

c r o s s e s  the  R P C  o f  H 2. T h e  p r o b a b l y  correc t  f o r m  o f  the  R P C  o f  O H  is i n d i c a t e d  
by the  d a s h e d  l ine  in Fig .  20.  H o w e v e r ,  a c o m p a r i s o n  w i t h  th e  R P C  o f  H F  s h o w s  

that  the  ab  ini t io  c a l c u l a t i o n s  o f t e n  d o  n o t  r e p r o d u c e  c o r r e c t l y  the  f o r m  o f  th e  

p o t e n t i a l  in  the  u p p e r  p o r t i o n  o f  the  p o t e n t i a l  w e l l ,  e v e n  i f  they have a correc t  
a s y m p t o t i c  b e h a v i o r .  (cf .  a l s o  [4].) 
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Fig. 16. RKR and theoretical potentials (left limbs). Solid lines: 1: RKR potential of KH [20]. 2: 
RKR potential of CsH [22(a)] Dashed line: RKR potential of RbH [21]. Theoretical potentials: O: 
KH [16]. J,: KH [19]. V: RbH [16]. [~: RbH [ 19 ] . . :  CsH [16]. +: CsH [17]. r e (KH) and D e (KH) 
were taken as units of distance and energy, respectively (curves shifted to common minimum) 

Fig. 17. Reduced potentials to Fig. 16 (left limbs). Dashed line: reduced RKR potential of KH [20]. 
Reduced theoretical potentials: O: KH [16]. A: KH [19]. V: RbH [16]. [2: RbH [19]. I :  CsH [16]. 
+: CsH [17]. The p-scale is 12.5 times more sensitive than in Fig. 18. The reduced RKR potentials 
of RbH and CsH of [22(a)] practically coincide with the reduced RKR potential of KH. There are 
slight inaccuracies Jn the RKR potential of CsH from [22(b)], which would be already noticeable 
with this p-scale (cf. [38]) 

Fig. 18. Reduced potentials to Fig. 16 (right limbs). Dashed line: reduced RKR potential of KH [20]. 
Reduced theoretical potentials: O: KH [16]. A: KH [19]. V: RbH [16]. [2: RbH [19]. II: CsH [16]. 
+: CsH [17]. �9 RbH [19] for D e corresponding to separated atoms. The reduced RKR potentials 
of RbH [21] and CsH [22(b)] practically coincide with the reduced RKR potential of KH in this 
format. In fact, the curve of CsH should lie slightly more to the right (cf. text to Fig. 17) 

Fig. 19. Reduced RKR and theoretical potentials of OH. Dashed line: reduced RKR potential [23]. 
Reduced theoretical potentials (references): O: [24(a)]. [~: [24(b)]. A: [24(c)]. Y: [24(d)] 

N o t  e v e r y  t h e o r e t i c a l  c a l c u l a t i o n  ref lec ts  c o r r e c t l y  t h e  f u n d a m e n t a l  s t r u c t u r e  o f  

t h e  p h y s i c a l  p r o b l e m  e v e n  t h o u g h  it  m a y  y i e l d  a v e r y  g o o d  a p p r o x i m a t i o n  o f  t h e  

m o l e c u l a r  c o n s t a n t s .  T h i s  is d e m o n s t r a t e d  in  Fig.  21 o n  t h e  e x a m p l e  o f  t h e  
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Fig. 20. Difference curves to Fig. 19 (right limbs). Differences in u from the reduced theoretical 
potential of H 2 [25] (zero line). Solid lines: 1: reduced RKR curve of OH [23]. 2: reduced RKR 
curve of HF [25]. Reduced theoretical potentials: 0: [24(a)]. U3: [24(b)]. A: [24(c)]. V: [24(d)]. I :  
[24(e)]. There are evidently slight errors in the RPC of OH. The dashed line indicates the probable 
correct continuation of this curve. The gap between the RPCs of OH and HF is relatively large, due 
to a slight anomaly of fluorine compounds (cf. Ref. 4); compare with the small gap between the RPC 
of H2 and OH 

Fig. 21. Difference curves for RPCs of HF (right limbs). Differences in u from the reduced theoretical 
potential of H2 [25]. Solid line: reduced RKR curve of HF [25]. Reduced theoretical potentials: T: 
[27]. O: [26] for the GVB+ 1 +2 basis. ~: [26] for the GVB method alone. The sensitivity of the 
u-scale is half of that in Fig. 20 

potent ia l  of  HF,  where - in reduced form - the R K R  potent ia l  [25] is compared  
with the ab ini t io CI calculat ions of D u n n i n g  [26] and the theoretical  potent ial  
curve of Lie and  Clement i  [27] calculated by a semiempirical  funct ional  density 
method,  where an excellent agreement  with the exper imental  values was obta ined  

for the molecular  constants  (cf. Table 2). Nevertheless,  the devia t ion from the 
reduced R K R  curve of H F  is too large for the potent ial  of [27] (the u-scale is 
twice less sensitive than  in Fig. 20). On the other hand,  the ab  init io CI-ca lcula t ion  
of [26] with the G V B +  1 + 2  basis (cf. Table II [26]) almost  coincides with the 
reduced R K R  potent ia l  curve. The reduced ab init io potent ial  calculated with 
the GVB method  alone [26] is less accurate, however,  still much  more acceptable 
than  the semiempir ical  potent ia l  of [27]. 

On the other hand,  very primitive approximat ions ,  such as the one electron 
pseudopoten t ia l  calculat ions are not  accurate enough to reflect correctly the 
fundamen ta l  structure of the physical problem.  This is demons t ra ted  on the 
potentials  calculated for the ions of alkali d ia tomic molecules by Valance et al. 
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Fig. 22. Reduced RKR and theoretical potentials 
(right limbs). Solid line: reduced RKR potential 
of Li 2 [35]. Dashed line: reduced RKR potential 
of NaK [39]. Reduced theoretical potentials. u 
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[28]. These potential curves are evidently incorrect, as also a comparison with 
the theoretical ab initio calculated potential of  Li~ [29] shows. The method of 
Valance overestimates the De value; however, this alone is not the cause of the 
discrepancy, since this De value corresponds to the asymptotics and hence is 
consistent with the geometry of the potential curve. 

In [28], only corrected De values obtained with the use of  a correction for the 
electron correlation are given.. However, the corresponding potentials have not 
been and will not be calculated [30] and thus cannot be tested. There are a lot 
of  papers using this method for molecular ions (cf., e.g. [31]), however, 
usually only the lowest portion of the potential well is calculated and, frequently, 
the tabulated potential has not been published. Although the method seems to 
give reasonable guesses of  the molecular constants, it does not seem sufficiently 
accurate to yield a reliable potential curve. 

For very heavy molecules, like, e.g. Bi2, the all electron problem is too complicated 
even for modern computers. However, the method of effective potentials employed 
for such cases still does not yield reliable potentials, even if relativistic effects 
are included. This is illustrated by the reduced potential of  Bi2 corresponding to 
the theoretical potential of  [32]. The discrepancy between this reduced potential 
curve and the reduced R K R  potential [33] is unacceptably large (Fig. 2). 

3. Conclusions 

We have proved on a number  of  non-trivial examples (also for heavier molecules) 
that the statement formulated in the abstract is true. Thus even inaccurate ab 

initio calculations have a practical significance: with the use of  the RPC method, 
one may obtain from the inaccurate ab initio potential a rather accurate estimate 
of  the true potential, if the experimental values of the molecular constants 
re, We, and De are known. This seems to be a quite interesting application of the 
RPC method since, for heavier molecules, the errors in the potential and in the 
molecular constants are still large even if quite extended theoretical calculations 
are made, and the knowledge of the potential is the fundamental  information on 
the diatomic system. 

Thus we have also shown that, in the f ramework of the RPC scheme, the 
configuration interaction variational method correctly reflects the fundamental  
structure of  the physical problem (here the interatomic interaction). This property 
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o f  t he  m e t h o d  ( r a t h e r  s u r p r i s i n g  at first s ight )  c a n n o t  be  p r o v e d  f r o m  t h e  t h eo ry ,  

n e i t h e r  w i th  m o s t  s o p h i s t i c a t e d  m e t h o d s  o f  m o d e r n  m a t h e m a t i c s ,  H e n c e ,  ou r  

s t a t e m e n t  has ,  in p r i n c i p l e ,  e m p i r i c a l  c h a r a c t e r .  T h e  s a m e  h o l d s  fo r  t he  r egu la r i t i e s  

o f  t he  R P C  s c h e m e ,  f o r m u l a t e d  in A p p e n d i x  A. This  " e m p i r i c a l "  c h a r a c t e r  o f  

t he  m e t h o d  s h o u l d  n o t  be  a s e r ious  o b j e c t i o n  s ince ,  in rea l i ty ,  m a n y  m e t h o d s  o f  

m o l e c u l a r  p h y s i c s  h a v e  n o  so l id  t h e o r e t i c a l  ( m a t h e m a t i c a l )  f o u n d a t i o n s  a n d  in 

p r a c t i c e  a l so  h a v e  an  e m p i r i c a l  cha rac t e r .  A n  i m p o r t a n t  e x a m p l e  is the  c a l c u l a t i o n  

o f  e x p e c t a t i o n  va lues  o f  ( in  p a r t i c u l a r  u n b o u n d e d )  o b s e r v a b l e s  fo r  e x c i t e d  s ta tes  

w i th  t he  use  o f  t he  w a v e  f u n c t i o n  o b t a i n e d  in t he  v a r i a t i o n a l  c a l c u l a t i o n  ( fo r  

l i t e ra tu re  cf. [34]) .  
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and was very interested in a proof of the hypothesis discussed in this paper. The author humbly 
hopes that he also will be satisfied by the justification presented here. 

Appendix A 

In Born-Oppenheimer approximation, the internuclear potential of a diatomic system is uniquely 
determined by three parameters: the two atomic numbers Z 1 and Z 2 and the number of electrons n 
(for neutral molecules, n = Z 1 + Z2): The Coulomb repulsion of the nuclei depends only on Z l and 
Z2, the electronic energy is obtained as the solution of the electronic Schroedinger equation (para- 
metrized by the internuclear distance, r). The Schroedinger operator of electronic energy of different 
diatomics varies only according to Z~, Z2, and n. (In higher approximation of the adiabatic approach, 
the potential would also contain a small correction depending on the masses of the isotopes [1].) 
Therefore, in principle, any regularities existing in the family of ground state internuclear potentials 
of diatomic molecules might be expressed in terms of these three parameters as long as Born- 
Oppenheimer approximation is acceptable, which is the case for most ground states. 

In the RPC scheme regularities are, indeed, observed. However, it appears that--in contradistinction 
to the earlier hypothesis (cf. [2]), the dependence on Zi, Z2, and n is rather complicated (monotonic 
dependence on Z l and Z 2 holds only as a rough rule for non-metallic molecules). The study of 
ground state potentials of a large number of neutral molecules revealed regularities that we loosely 
called "a periodic system of diatomic molecules", they may be characterized as follows: (1) By 
definition, the RPCs of different diatomics have a common minimum (1, 0). (2) There are groups of 
chemically related molecules (e.g. nonmetallic hydrides, alkali hydrides, hydrides of the IIa and lib 
group, non-metallic homonuclear molecules of the fifth, sixth and seventh column of the periodic 
table, mercury halides etc.) in which the following rules hold: (a) the RPCs of different diatomics 
of the group do not intersect anywhere. (b) The shape of the RPC within the group changes with 
increasing atomic numbers as follows: The RPC turns to the right around the common minimum 
while becoming broader ("the reduced attractive force decreases"). (3) The noncrossing rule holds 
for all diatomics in the left limb and it also approximately holds for many molecules in the right 
limb. Nevertheless, slight crossings of the RPCs of different groups may appear in particular in the 
highest parts of the right limb. (4) The RPCs of the rare gases (ground states!) coincide approximately 
and form the right-hand boundary of the admissible RPC region in the p vs (u + 1) diagram (i.e., no 
ground-state RPC lies to the right of this curve.) For non-metallic molecules, the left-hand boundary 
of this region is formed by the RPC of H 2. (5) The differences in p between the RPCs are very small 
in the left limb, i.e., the "quasiparallel" RPCs of all diatomics lie close together in the left limb. 

Molecular ions form a different scheme. The study of excited states is still more complicated [29]. 
For some excited states, the Born-Oppenheimer approximation (or even the adiabatic approximation) 
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may not hold ("perturbat ions")  so that the regular dependence on the fundamental  parameters ZI ,  
Z2, and n possibly may not hold quite accurately. Nevertheless, it certainly seems meaningful  to 
compare excited states in a group of  affiliated molecules, where the symmetries of  the corresponding 
states are the same (like, e.g., the alkali diatomic molecules;  for the spectral theory of  Schroedinger 
operators including symmetry properties of. [45]). Indeed, it appears [29] that the RPC method may 
be used to classify the excited states. 

If not too strong perturbations are present, the hypothesis of  this paper also holds for excited states 
[29]. 

Appendix B 

The theoretical RPCs are calculated from the theoretical potentials with the use of formulas (1)-(3) 
and the theoretical values of  the molecular constants re, ke, and D e. Therefore, the determination of  
the theoretical values of  these constants accurately corresponding to the theoretical potential is 
essential. Since the methods frequently used for the calculation of k~ (even from expensive ab initio 
calculations) do not seem quite trustworthy, we considered this Appendix and Tables 3-6 worthwhile. 

In a general case, the correct value of  r~, corresponding to the min imum of  the theoretical potential 
may be rather accurately calculated by interpolation methods.  The correct determination of D e is a 
more complicated problem. The convergence of the variational Cl-method depends on r, also the 
role of  different configurations varies with r and some experience, feeling, and auxiliary tests are 
necessary for a satisfactory calculation (cf. [4]). When U(r~) is known, the dissociation energy may 
then be calculated in two ways which, in principle, should be equivalent: 

(a) from the asymptotic value of the potential (value of  potential energy for very large internuclear 
distance) or (b) from the energy of  the dissociation products.  

Both methods have some weak points: (a) for the reasons explained above, (b) the energy of the 
dissociation products should be consistently calculated "in the same approximation" as the molecular 
energy, however, this concept is in itself not quite exactly defined. In reality, in some cases both 
methods do not  yield the same value of  D e ; in some cases the difference is small in other cases (cf., 
e.g.. [19]) the diff~erenee-is~ large. Anyway, the value of  D e calculated from the asymptotics of  the 
potential should be preferred, since it is consistent with the geometry of  the potential curve (cf. the 
discussion of  the potential of  RbH from [19] in the text and Fig. 18). Fortunately enough,  the RPC 
method is not very sensitive to small errors in the value of  D e in the left limb and in the lower part 
of  the right limb. It becomes highly sensitive in the upper  tail of  the potential curve; hence the use 
of  theoretical potentials probably would not be meaningful  for an estimation of D~ (cf. [34]). 

The worst problem is the determination of the force constant  k e. One method employed is the 
calculation of the energy levels and the spectroscopic constants from the theoretical potential by 
numerical methods  and calculation of  k~ from we(Y10) using Eq. (5). In many  cases, only very few 
points of  the potential are available, which makes also the application of this method somewhat  
dubious; moreover, if an approximate method must  be used, it seems preferable to calculate k e directly. 

The ke value is obtained in this case from interpolation, using Eq. (4). However, there is no 
mathematical  criterion which could guarantee an accurate value o f  (d2U/drZ)r=r, even if the 
interpolation function (polynomial) approximates the discrete points of  the potential very accurately. 
An interpolation using three parameter  "empirical" functions,  like the Morse function (cf., e.g. [16]), 
does not seem reliable since, in a general case, these functions yield a rather poor approximation 
for the potential [2,46]. In our opinion, it is necessary to use a combined calculation and only a 
comparison of different approximative procedures may give a certain guarantee for a reliable value of 
k~. The procedure we use for the calculation of the theoretical value of ke (and r e and D e at the 
same time) is the following (this procedure was also used in Jen6's PhD Thesis and the subsequent  
publications [6]): In the discrete points of  the theoretical potential, we interpolate: (1) the potential 
function and (2) the (monotonic)  electronic energy (subtracting the nuclear repulsion). These two 
calculations are two different numerical  procedures. (3) Two different methods are used: (a) for n + 1 
points, a polynomial  of  degree n fitting these points is calculated and for a chosen number  N of the 
points of  the theoretical potential (in a reasonable range of r), this calculation is made for all n < N. 
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(4) For  several  chosen  numbers  N of  points  of  the theore t ica l  potent ia l ,  the  me thod  of  least  squares  

is e m p l o y e d  for al l  n < N. Thus  four  different numer ica l  p rocedures  are used  and  compared .  The 
ma in  cr i ter ion i s  the s tabi l i ty  of  the results  with respect  to the degree  of  the in te rpo la t ion  po lynomia l ,  

n, and  the ag reemen t  of the four  different  methods .  (The dep th  of  the m i n i m u m  and  the value  of  the 
m e a n  dev ia t ion  are fur ther  cri teria.)  It is found  that ,  for the de t e rmina t ion  of  ke, on ly  ca lcu la t ions  
wi th  N > 4  are rea l ly  mean ingfu l :  more  points  of  the curve are needed  to fix the curva ture  in the 

min imum.  I f  no s tabi l i ty  d o m a i n  is found,  or i f  an essent ia l  d i shgreement  be tween  the four  different 

numer ica l  p rocedures  appears ,  the results  cannot  be t rusted.  However ,  i f  these cr i ter ia  are fulfilled, 

the whole  p rocedure  is repea ted  inc lud ing  the value  of  r e ob ta ined  in the first run and  compar ing  

the results;  an agreement  shou ld  be obta ined.  

The whole  ca lcu la t ion  is then  para l le l ly  repea ted  for a Morse  poten t ia l  ca lcu la ted  for the same r 
values  with the theore t ica l  values  of  the molecu la r  cons tants  (ca lcu la ted  from the theore t ica l  potent ia l ) ,  

i.e., the  p rocedure  is para l le l ly  s imula ted  on a c losely re la ted  potent ia l  funct ion  and  the s tabi l i ty  
ranges  and  the dev ia t ions  are compared .  By this  procedure ,  the d i sc repanc ies  tha t  migh t  appea r  for 

some n or in some me thod  may  be exp la ined  and thei r  s ignif icance cleared.  This  is a ra ther  lengthy  

procedure ,  however ,  it seems to y ie ld  a cer ta in  guaran tee  for the va lue  of  the force constant ,  ks. 

Exper i ence  shows that  most  re l iable  values  of the molecu la r  cons tants  (in pa r t i cu la r  ke) are ob ta ined  

in the direct  po lynomia l  fitting for n be tween 7 and  10 (if  the po lynomia l  does  not  osci l la te  in the 
in teres t ing  range,  which is cur ren t ly  checked  on the moni tor) .  The Morse  funct ion  is used  o n l y  for 
this  aux i l i a ry  test. As an example  we show a par t  of  these ca lcu la t ions  for the theore t ica l  po ten t ia l  

of  KH from [16]: 

It is, of  course,  not  poss ib le  to present  here all  results  of  this  vo luminous  ca lcula t ion .  Table  3 conta ins  

the in t e rpo la t ion  wi thout  the po in t  r e. We show here ca lcu la t ions  wi thou t  any  we igh t ing  of  points  

to avo id  the objec t ion  that  the inf luence of  some points  migh t  be prac t ica l ly  e l imina ted  th rough  a 

small  weight .  The m e a n  dev ia t ion  

1 / ( N - l )  �9 N--1 71/2 

,_Zo j 
is of  the order  10 7-10 14 for the po lynomia l  fitting and  10-1-10 3 for the least  squares  method .  Since 

w e is a lways  g iven in pub l i ca t ions ,  we also show here the value  of  w e ca lcu la ted  from k e with the 

use of  Eq. (5) and  not  k e itself. We do not  show the ca lcu la t ion  inc lud ing  r e which  gives s l ight ly  

bet ter  (and  more  s table)  results.  Never the less ,  the results  are qui te  sat isfactory,  the (accura te)  s tabi l i ty  

range  for the po lynomia l  fitting ranges  from- n = 6 to n = 12. For  N = 13, the least  squares  me thod  
na tu ra l ly  can  give on ly  for h igher  n accurate  s table results  tha t  are in ag reement  wi th  the po lynomia l  
fi t t ing which  is here  n -> 9. (For  N = 8, the s tabi l i ty  range  would  begin  at n = 5.) In general  the least  

squares  m e t h o d  is less accura te  than  the po lynomia l  fitting as a para l le l  ca lcu la t ion  for the Morse  

funct ion  clear ly  proves.  Better  resul ts  are ob ta ined  in inc lud ing  r e . 

Table  4 is para l le l  to Table  3 and  shows the same ca lcu la t ion  for the Morse  funct ion  co r re spond ing  

to the values  of  the mo lecu l a r  pa ramete r s  de te rmined  in the ca lcu la t ions  of  Table  3. The errors in 

o) e (and r e )  resul t ing  for smal l  n in Table  3 are r ep roduced  in Table  4 ( though  they are usua l ly  

smal le r  for the ana ly t ic  Morse  funct ion) .  The value  of  w e = 985.7 in [16] is ev ident ly  by abou t  4 cm -1 

in error. 

A p o l y n o m i a l  fitting of  the Morse  funct ion for N = 4  inc lud ing  r e gives w e = 1029 for n = 2 ,  and  

w e = 995 for n = 3; a least  squares  in te rpo la t ion  gives o) e = 960 for n = 2. 

A least  squares  in te rpo la t ion  of  the Morse  funct ion  (wi thout  re) gives, e.g., for N - 6 .  and  n = 3 :  

w e = 1004 and  for n - 4: % = 994.3. Inc lud ing  re, the values  1003 and  994.1, respect ively,  are ob ta ined  

( co r re spond ing  results  are ob t a ined  for the theoret ical  potent ia l ) .  Errors  in r e also result .  This  i l lustrates  
the insufficiency of  ca lcu la t ions  us ing too small  a n u m b e r  of  points  and  a low degree  of  the in te rpo la t ion  
po lynomia l .  (The next  examp le  shows tha t  the errors may  be much  larger.)  

This m e t h o d  may also be used  to detect  errors tha t  are f requent ly  found  in the ca lcu la t ion  of  the 

force cons tan t  in m a n y  theore t ica l  papers .  In way of examp le  we take  the ca lcu la t ion  of  [32] for the 
Bi 2 molecu le  (we apo log ize  at the same t ime to the authors :  this  cer ta inly  is no persona l  cri t icism, 

since such errors  are f requent ;  we s imply  have to present  a concrete  example  f rom a recent  ca lcula t ion) .  
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In [32], nine points ( N  = 9) are interpolated using the least squares method by a polynomial of fourth 
degree (n = 4). The authors report the value of % calculated from the force constant with the use 
of Eq. (5) as "about 170 cm -1''. However, this value is, in fact, by about 14% in error, as Table 5 
shows--a  too large error. Indeed, for the least squares method, the value oJe = 168 cm -1 is obtained 
for n = 4, however, this value lies outside the stability range and the correct value is about 148 cm -1. 
The parallel calculation for the Morse function with the value of k e calculated with w e = 148 cm -~ 
clearly proves this statement, showing the same trend (though, for the analytic Morse function the 
results are more accurate and more stable). We would like to stipulate once more that a calculation 
of the force constant by a single method cannot be convincing and only a comparative calculation 
yielding stable results may guarantee a reliable result. 

Table 3. Interpolation of the theoretical potential and the electronic energy of KH [16], N = 13 (r e 
not included) 

i a 2 b 3 c 4 a 

Polynomial 
order n re(A ) we(c m i) re(A ) we(c m 1) re(A ) %(cm 1) re(~ ) o)e(cm 1) 

4 2.21969 990.883 2.27618 997.292 2.22032 985.794 2.01004 1479.555 
5 2.21971 990.742 2.22732 1016.923 2.21982 990.137 2.18136 801.954 
6 2.21971 990.743 2.21974 991.847 2.21969 990.919 2.23477 916.172 
7 2.21969 990.895 2.22028 987.259 2.21969 990.931 2.22461 986.791 
8 2.21967 991.063 2.22009 987.457 2.21967 991.073 2.22038 990.714 
9 2.21965 991.183 2.22019 988.204 2.21965 991.186 2.22011 988.693 

10 2.21967 991.079 2.21988 990.508 2.21967 991.077 2.21987 990.471 
11 2.21966 991.138 2.21966 99.917 2.21966 991.137 2.21966 989.907 
12 2.21965 991.191 2.21967 990.030 2.21965 991.191 2.21967 990.003 

a 1: polynomial fitting of thepotential  
b 2: least squares interpolation of the potential 
c 3: polynomial fitting of the electronic energy 
d 4: least squares interpolation of the electronic energy 

Table 4. Interpolation for the Morse function for the values of internuclear 
included) for KH ~ 

distance of [16] (r e not 

1 2 3 4 

Polynomial 
order n re(~ ) we(cm -L) re(~ ) we(cm -1) r~(~) we(c m i) re(,~) we(c m 1) 

4 2.21988 991.999 2.27874 1006.810 2.22051 986.910 2.01662 1473.491 
5 2.21998 991.096 2.22658 1030.787 2.22009 990.495 2.18232 822.750 
6 2.22000 990.983 2.21816 1003.687 2.21998 991.158 2.23261 926.965 
7 2.22000 990.997 2.21954 991.320 2.22000 991.033 2.22385 990.428 
8 2.22000 990.999 2.21998 990.811 2.22000 991.008 2.22027 994.040 
9 2.22000 990.999 2.22000 990.983 2.22000 991.003 2.21992 991.476 

10 2.22000 991.000 2.22000 991.000 2.22000 991.001 2.21999 990.963 
11 2.22000 990.999 2.22000 990.999 2.22000 990.999 2.22000 990.990 
12 2.22000 990.999 2.22000 991.000 2.22000 990.999 2.22000 990.976 

a Values of the molecular constants used: re = 2.22 A, we = 991.0 cm -1, D e = 14 488.5 cm-1. The mean- 
ing of 1, 2, 3, and 4 as in Table 3 
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The molecular constants are, of course, needed also in the calculation of the RPCs from the RKR 
potentials. Here the same method may be employed for a verification of the validity of the approxima- 
tion formula (5) (cf. [1]). The problem seems to be much worse, since, for the RKR potentials, the 
available points lie far from the minimum. Nevertheless, even here, the method gives very good 
results as the example of the RKR potential of LiH from [13] may illustrate. We have chosen the 
light molecule LiH, since here the points of the RKR potential lie sufficiently far from the minimum 

Table 5. Determination of w~(cm -1) from interpolation of the theoretical potential of Bi 2 [32] and 
the corresponding Morse function, N = 9(10) 

Theoretical potential Morse function a 

Polynomial 
order n 1 b 2 c 3 d 4 e n 1 b 2 c 3 d 4 e 

4 150.420 168.025 148.908 167.346 2 152.370 110.858 137.346 112.486 
5 149.970 157.795 148.070 157.234 3 149.408 151.882 149.408 151.589 
6 149.990 154.372 148.002 153.815 4 148.401 154.853 148.178 154.532 
7 149.997 149.215 147.983 149.075 5 147.972 148.795 148.027 148.754 
8 150.000 147.457 148.011 147.497 6 147.991 147.878 147.996 147.889 
9 147.758 147.758 7 147.997 147.988 147.999 147.989 

8 148.000 148.000 147.999 148.000 
9 148.000 148.000 

a The values of the molecular constants used: r e = 2.788 .~, (o e = 148.0 cm 1, 
b 1: polynomial fitting (without re) 
c 2: least squares interpolation (without re) 
d 3: polynomial fitting (r e included) 
d 4: least squares interpolation (re included) 

De = 18 483 cm 1 

Table 6. Interpolation of the RKR potential and electronic energy of LiH [13] ( N  = 15 Including re) a 

i u 2 c 30 4 e 

Polynomial 
order n re(~.) We(Cm -1) re(A) ~%(cm -l)  re(]~) we(cm -1) r~(A.)  We(Cm -1) 

4 1.59484 1408.99 1.59407 1477.18 1.59573 1404.46 1.59609 1385.49 
5 1.59566 1404.05 1.59282 1415.95 1.59546 1406.04 1.59639 1403.26 
6 1.59556 1405.15 1.59527 1402.50 1.59551 1405.46 1.59568 1406.95 
7 1.59555 1405.24 1.59566 1404.83 1.59556 1405.10 1.59555 1406.17 
8 1.59555 1405.23 1.59559 1406.06 1.59555 1405.21 1.59556 1405.99 
9 1.59564 1404.34 1.59550 1406.06 1.59564 1404.36 1.59550 1405.99 

10 1.59561 1404.78 1.59550 1405.22 1.59561 1404.78 1.59550 1405.21 
11 1.59563 1404.53 1.59555 1404.99 1.59563 1404.53 1.59555 1404.99 
12 1.59562 1404.73 1.59556 1405.10 1.59562 1404.73 1.59556 1405.10 
13 1.59561 1404.88 1.59562 1404.81 1.59561 1404.88 1.59562 1404.81 
14 1.59556 1405.39 1.59556 1405.36 1.59556 1405.39 1.59557 1405.33 

a For experimental values cf. Table 1 
b 1: polynomial fitting of the potential 
c 2: least squares interpolation of the potential 
d 3: polynomial fitting of the electronic energy 
e 4: least squares interpolation of the electronic energy 
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(AG1/2=705.8 c m  1). In Table 6, we show the calculation including the min imum point r e = 
1.595584 A as given for the R K R  potential in [13]. For all methods,  the results are evidently, very 
accurate (maximal deviation from the experimental  value of  Yl0 is smaller than  0.1% and hence 
practically irrelevant for the graphical representation of the RPC method).  These results were fully 
confirmed by a parallel calculation for the Morse function. In this sense, the validity of  the approxima- 
tion (5) is verified for the ground states (it is possible that for some excited states, larger deviations 
might exist, in particular, if perturbations are present). The calculation without r e is only very slightly 
worse, however, the differences are, indeed, minimal,  the maximal  difference in the to e values in the 
stability range being about 0.1%. 

The troubles occurring most  frequently in analyzing the theoretical potentials are first a frequently 
insufficient number  of  points, second a choice of points which is not suitable for the interpolation. 
It would be nice if the authors would pay more attention to these details of  calculation which would 
make the value of  k e more reliable. Of couse, if, e.g. the configurations are not correctly chosen for 
corresponding values of  r and the potential is not smooth  enough,  problems may occur (cf. the 
calculation for SH in [4]). 

The interpolation of the R K R  potentials is somewhat  delicate for some older data where the calculation 
of  the constants (analysis of  the spect]:um) was not  done by the modern smoothing procedures. For 
the new data obtained by modern  techniques and evaluated by appropriate computer  methods,  the 
method gives as a rule quite convincing results and is used for a verification of  Eq. (5) in the 
calculation of the RPC curves from R KR  potentials. 
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Note added in proof. The following remarks seem worthwhile: 1) The large deviations of the Morse 
function from the R KR  potential (or, correspondingly, from the theoretical potential if theoretical 
molecular constants are used) suggest that a fit of  the potential using Morse function cannot guarantee 
an accurate determination of the force constant. 2) It is interesting to note that the hypothesis discussed 
in the present paper  (and formulted in Sect. 1) has proved efficient also in a succesful application 
of the RPC method to polyatomic molecules by Spirko et al. [47]. 


